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Leading-edge effects in bypass transition
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The effect of a blunt leading edge on bypass transition is studied by numerical
simulation. A mixed direct and large-eddy simulation of a flat plate with a super-
ellipse leading edge is carried out at various conditions. Onset and completion of
transition is seen to move upstream with increasing bluntness. For sharper leading
edges, at lower levels of turbulence, transition usually occurs through instabilities on
low-speed streaks as observed by Jacobs & Durbin (2001) and Brandt et al. (2004)
whereas increasing either the turbulence intensity or the leading-edge bluntness brings
into play another mechanism. Free-stream vortices are amplified at the leading edge
because of stretching. In the case of particularly strong vortices, this interaction
induces a localized streamwise vortical disturbance in the boundary layer which then
grows as it convects downstream and eventually breaks down to form a turbulent
spot. These disturbances, which are localized and hence wavepacket-like, move at
speeds in the range 0.55U∞–0.65U∞ and occur in the lower portion of the boundary
layer. Simulations conducted with isolated vortices confirm such a response of the
boundary layer.

1. Introduction
1.1. Bypass transition in a flat-plate boundary layer

In the presence of free-stream turbulence (FST), boundary layer transition does
not follow the mechanism of growth of Tollmien–Schlichting (TS) waves followed
by three-dimensional modulation and breakdown to turbulence, a process that is
commonly referred to as natural transition. Instead, transition occurs sooner, via
mechanisms not yet fully understood. Morkovin (1969) called this bypass transition,
a term indicative of the fact that the aforementioned natural transition path to
turbulence is bypassed. This process is characterized by growth over time scales much
shorter than the viscous scale of TS waves. As a result, boundary layer transition can
occur at momentum-thickness Reynolds numbers (Reθ ) of the few hundred instead
of the few thousand that is typical of natural transition.

There have been many experimental, computational, and analytical studies of
bypass transition, but the path to turbulence under a broad range of conditions
remains a mystery. Dryden (1936), conducting experiments on boundary layers
observed that “the Reynolds number at which transition occurs is a function of
the initial turbulence of the air stream, decreasing as the turbulence is increased” and
also that “the laminar and eddying regions cannot be distinguished on the basis of
the magnitude of the speed fluctuation”, now well-recognized aspects of boundary
layers forced by FST. In their experiments, Klebanoff, Tidstrom & Sargent (1962) also
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observed large spanwise variations in streamwise velocity, which were subsequently
named Klebanoff modes or K-modes by Kendall (1985). These are not modes in the
strict sense, i.e. they are not solutions to an eigenvalue problem. Klebanoff modes are
usually depicted in terms of RMS profiles of fluctuating streamwise velocity inside
the boundary layer. Experiments have shown the fluctuations to be large, reaching
up to 20 % of the mean free-stream velocity. However, in spite of such high levels
of disturbance, the mean velocity profile in the boundary layer prior to transition
remains unchanged (Westin et al. 1994).

It is believed that Klebanoff modes are somehow responsible for transition, and
a lot of experimental effort has gone into observing these modes (Roach & Brierley
1992; Westin et al. 1994; Matsubara & Alfredsson 2001). These experiments show that
while the fluctuation level outside the boundary layer decays downstream, fluctuations
in streamwise velocity inside the boundary layer increase, with the peak in the RMS
fluctuation around the middle of the boundary layer. Furthermore, frequency spectra
inside the boundary layer show a marked shift toward lower frequencies, indicating
that higher frequencies in the FST do not penetrate into the boundary layer, a
phenomenon called shear sheltering (Jacobs & Durbin 1998; Hunt & Durbin 1999).
The spanwise correlation of the streamwise velocity perturbation u′ shows a strong
anti-correlation at separations of the order of the boundary layer thickness. From
these observations, it is clear that the dominant modes in the boundary layer are
streamwise elongated streaky structures with a spanwise scale of the order of the
boundary layer thickness. However, the connection between Klebanoff modes and
transition remains uncertain as the RMS fluctuations and averaged spectra do not
provide any inkling of how transition actually occurs.

The formation of boundary layer structures with spanwise variation in streamwise
velocity has been analysed using the theory of optimal disturbances (Andersson,
Berggren & Henningson 1999; Luchini 2000). This is based on the theory of transient
growth of disturbances, a result of the non-self-adjoint (and non-normal) governing
equations (Butler & Farrell 1992; Trefethen et al. 1993; Reddy & Henningson 1993).
Although exponentially growing modes dominate over long time, algebraic growth
can be significant in the transient, overwhelming the eigenmodes in their initial stages
of growth. In fact, algebraic growth can occur even when all the eigenmodes are
decaying. The linear analyses of Andersson et al. (1999) and Luchini (2000) indicate
that the flow structure that can cause the largest transient growth at a particular
streamwise distance L from the leading edge is a pair of counter-rotating streamwise
vortices with a spanwise separation of 1.4δL, where δL is the boundary layer thickness
at x =L. Downstream of L, i.e. for x > L, the disturbance decays due to the effect of
spanwise ellipticity, i.e. the effect of spanwise viscous terms in the governing equations.
In more recent work, Zaki & Durbin (2005) consider the effect of oblique modes on
bypass transition. They show, using the Orr–Sommerfeld and Squire equations and
the continuous spectra of both operators, that for certain mean flow profiles, both
have the same dispersion relation. They conclude that streaks are formed as a result of
secular growth due to resonant forcing of Squire’s modes by the corresponding Orr–
Sommerfeld continuous mode (Hultgren & Gustavsson 1981; Benney & Gustavsson
1981). Transition occurs when streaks are perturbed by higher frequency modes in
the free stream. They were able to reproduce the formation of turbulent spots with
only two continuous modes specified at the inlet of their computational domain.

This transition mechanism was first revealed by the direct numerical simulations
(DNS) of Jacobs & Durbin (2001) who observed turbulent spots formed by the
interaction of a high-frequency free-stream eddy with a parcel of fluid moving slower
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than the mean, which they call backward jets. The low-frequency content in the free
stream causes the formation of low- and high-speed streaks (Goldstein & Wundrow
1998; Leib, Wundrow & Goldstein 1999; Zaki & Durbin 2005). Turbulent spots
are formed due to low-speed streak instability triggered by high-frequency free-
stream eddies. Simulations of Andersson et al. (2001), Brandt & Henningson (2002),
and Brandt et al. (2003) focused on secondary instabilities of streaks. They observe
sinuous instabilities to be more prevalent that varicose ones, while the streaks become
unstable only at very large amplitudes. These instabilities were also observed in the
direct simulations of Brandt, Schlatter & Henningson (2004). The backward jet
mechanism of Jacobs & Durbin (2001) and the sinuous streak instability seem to
be the same mechanism, both centred on a low-speed streak which is distorted
asymmetrically, occurring near the edge of the boundary layer.

1.2. Leading-edge effects

The transition scenarios discussed in the previous section do not include any of
the effects of a leading edge, whose detrimental effects have been recognized by
experimentalists. Investigations into the effect of leading-edge bluntness on the
boundary layer development were carried out by Kendall (1991) and Watmuff (1997),
who observed that changing the aspect ratio of the leading-edge ellipse does not
affect the K-mode disturbances in the boundary layer. However, the amplitude of
Tollmien–Schlichting waves increases nonlinearly with decreasing aspect ratio. This is
to be expected as the receptivity process at the leading edge depends on its geometry.
In subsequent experiments, Kendall (1998) observed that free-stream vorticity excited
three different kinds of disturbances in the boundary layer. The first were the streaky
Klebanoff mode oscillations that have been a hallmark of boundary layers subjected
to FST. The second were an outer-layer motion at TS frequencies, and the third,
the traditional TS wavepackets which were much lower in amplitude than the other
two disturbances. Kendall also observed that the TS wavepackets appear rather
sporadically but could not identify the defining feature in the free stream that excites
a TS wavepacket.

The transition experiments of Westin et al. (1994), and Klingmann et al. (1993) used
a flat plate with an asymmetric leading edge designed using potential flow simulations
to eliminate the adverse pressure gradient region on the leading edge. However, in
spite of such a careful design, significant upstream movement of the transition onset
location was observed for slightly off-design conditions. Westin et al. (1994) attribute
this to the peak in the pressure coefficient. The available experimental data suggest
that transition moves upstream with increasing leading-edge bluntness.

Of all the bypass transition scenarios presented earlier, only that of Goldstein &
Wundrow (1998) considers the effect of the leading edge. They argue that wake-like
disturbances that correspond to wall-normal vorticity stretch and tilt around the
leading edge to enhance streamwise vorticity in the flow above the flat plate (see
figure 1a). Their argument is as follows: rapid distortion theory predicts amplification
of zero-frequency modes and therefore acts as a low-pass filter. Furthermore, the
boundary layer itself selectively amplifies low-frequency, small-spanwise-wavelength
disturbances. Therefore, the presence of the leading edge causes selective amplification
of low-frequency modes, first by vortex stretching, and then through a low-frequency
selection process in the boundary layer. The resulting disturbance is in the form of
long streamwise vortices whose effect on the boundary layer was later analysed by
Wundrow & Goldstein (2001) using a mixed theoretical–computational approach.
They observe that these vortices can cause a wake-like defect in the boundary
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Figure 1. (a) Effect of leading edge through stretching of vortex tubes. (b) Schematic of
domain used in simulations of bypass transition (every fourth grid line is shown). The flat
plate in the simulations extends further downstream. The origin of the Cartesian system
(x, y) is at the nose of the leading edge and the symmetry plane is the stagnation plane for
x < 0. (c) Spanwise correlation of streamwise velocity u inside the boundary layer at different
streamwise locations: , close to the leading edge; , just upstream of transition; · ,
in the transition region; · · · ·, in the turbulent boundary layer.

layer profile, similar to the backward jets of Jacobs & Durbin (2001). Formation
of turbulent spots is then attributed to growth of inviscid instability waves on the
inflectional profile produced.

In summary, even though there is broad agreement that the conditions at the leading
edge have significant impact on transition, the additional complexity introduced by
the leading edge has been avoided in most theoretical and computational studies of
transition. Based on the results available, two possible leading-edge mechanisms have
been proposed: (a) earlier transition due to better receptivity of blunter leading edges
to form TS waves and their increased growth rates in the adverse pressure gradient
region, and (b) quicker growth of Klebanoff modes due to anisotropy introduced by
stretching of vortices around the leading edge, resulting in earlier transition by the
same mechanism as when no leading edge is present. One of the goals of this study
is to identify the mechanism that leads to transition in the presence of a leading edge
and to see if either of the above-mentioned mechanisms is important.

2. The numerical model
2.1. Governing equations

The governing equations for three-dimensional unsteady flow of a compressible fluid
in a curvilinear coordinate system (x1, x2, x3), written in terms of the contravariant
velocity vi = dxi/dt , for a Newtonian fluid obeying Fourier’s law of heat conduction
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are (see Aris 1989 for a complete derivation)

dρ

dt
+ (ρvk),k = 0,

∂

∂t
(ρvi) + (ρvivj ),j = −(gijp),j + τ

ij
,j ,

∂E

∂t
+ [(E + p)vj ],j = (κgijT,i),j + (τ ijgikv

k),j ,

⎫⎪⎪⎪⎪⎪⎪⎬
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(2.1)

where density, temperature and pressure are denoted by ρ, T and p respectively, and
the total energy E and viscous stress tensor τ ij are given by

E =
p

γ − 1
+ 1

2
ρ |v|2 =

p

γ − 1
+ 1

2
ρgijv

ivj , (2.2)

τ ij = µ
[
gjkvi

,k + gikv
j
,k − 2

3
gijvk

,k

]
. (2.3)

In these equations, the general tensor notation due to Einstein is used (subscripts
and superscripts denote covariant and contravariant tensors respectively). gij and
gij are the covariant and contravariant metric tensors. The subscript, j indicates
the covariant derivative, which, for a second-order contravariant tensor Aij may be
written as

A
ij
,k =

∂Aij

∂xk
+ Γ i

pkA
pj + Γ

j
pkA

ip (2.4)

where Γ i
jk is the Christoffel symbol of the second kind.

To derive the large-eddy simulation (LES) equations, define a filter G(x) with
compact support in the domain of interest Ω . Then, any tensor A

i1...im
j1...jn

may be filtered
as

√
gA

i1...im
j1...jn

(x, t) =

∫ ∫
Ω

∫
A

i1...im
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√

g dx ′. (2.5)

The filtered continuity equation suggests that the following curvilinear equivalent of
Favre filtering,

Ã
i1...im
j1...jn

=

√
gρA

i1...im
j1...jn√

gρ
, (2.6)

leaves no unclosed terms in the continuity equation. With this definition, the filtered
non-dimensional governing equations become

∂
√
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+

∂

∂xk
(
√

gρ ṽk) = 0, (2.7)
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gρ ṽq ṽj = − ∂

∂xj
(gij √

g p) − Γ i
qjg

qj √
g p

+
∂

∂xj
(
√

gτ ij ) + Γ i
qj

√
g τqj − ∂sgsτ

ij

∂xj
− Γ i

qj sgsτ
qj , (2.8)

∂
√

g E

∂t
+

∂

∂xj
[
√

g(E + p) ṽj ] = − ∂
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where the resolved and subgrid stress tensor and heat flux vector are

τ̃ ij =
µ̃

Re

(
gjkṽi

,k + gikṽ
j
,k − 2

3
gij ṽk

,k

)
, (2.10)

q̃j = − µ̃

RePr
gjk ∂T̃

∂xk
, (2.11)

sgsτ
ij =

√
gρ(vivj − ṽi ṽj ), (2.12)

sgsq
j =

√
gρ(T vj − T̃ ṽj ). (2.13)

In addition, the equation of state is

√
gp =

γ − 1

γ

√
gρT̃ (2.14)

and the expression for pressure in terms of the conserved variables is

√
gp = (γ − 1)

[√
g E − 1

2

√
gρ gij ṽi ṽj − 1

2

√
gρ gij (v

ivj − ṽi ṽj )
]
. (2.15)

In the derivation of these equations, the metric tensor and Christoffel symbols are
assumed to be varying slowly over the spatial support of the filter kernel. They
may then be assumed to be constant over the entire filter kernel. In the above
equations, physical velocity components are normalized by the free-stream sound
speed c∞, density by the free-stream density ρ∞, pressure is normalized by γρ∞c2

∞ and
temperature by (γ − 1)T∞.

2.2. Discretization and simulation conditions

The governing equations are discretized using a sixth-order compact finite difference
scheme on a staggered mesh (Nagarajan et al. 2003). Time marching is through a
fully implicit, second-order-accurate Beam–Warming scheme in the region near the
body, and a third-order Runge–Kutta scheme in the region away from the body
(Nagarajan, Lele & Ferziger 2004). The unclosed subgrid terms are modelled with the
dynamic Smagorinsky subgrid model generalized to a curvilinear coordinate system.
Lengths, velocities and density are normalized by the leading-edge semi-major axis
a∗ (defined below), the speed of sound in the free-stream c∞ and the free-stream
density ρ∞ respectively. Unless stated otherwise, all quantities are non-dimensional.
Other normalization, such as the local boundary layer thickness for length or the
free-stream or friction velocity for velocities, are explicitly stated when used.

The geometry consists of a flat plate fitted with a super-ellipse leading edge defined
by

x∗6

a∗6
+

y∗2

b∗2
= 1 (2.16)

where the superscript ∗ denotes dimensional quantities; a∗ and b∗ are the semi-major
and semi-minor axes of the super-ellipse respectively. The aspect ratio of the leading
edge is AR = a∗/b∗. With a∗ as the reference length, the non-dimensional major
and minor axes are a =1 and b = 1/AR. The choice of exponents ensures that the
leading edge does not have any sharp corners, while maintaining a very high level of
continuity (up to the fifth derivative) at the junction of the flat plate and the leading
edge. In this study, two leading edges of aspect ratio 10 and 6 are used. These are
denoted by AR10 LE and AR6 LE respectively, and are characterized in table 1. The
change in aspect ratio corresponds to a change of leading-edge diameter by a factor
of 2.78.
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Leading edge Major axis (a) Minor axis (b) Aspect ratio LE diameter

AR 10 LE 2 0.2 10 0.06
AR 6 LE 2 1/3 6 0.166

Table 1. Characteristics of leading edges. All lengths are normalized by the semi-major axis
of the leading-edge super-ellipse (see figure 1b).

A schematic of the domain used and the coordinate system is shown in figure 1(b).
The Cartesian coordinate system used to describe the results has its origin at the
forward stagnation point, with the x- and y-axes along and normal to the line of
symmetry respectively. All lengths are normalized by the semi-major axis a of the
leading-edge super-ellipse. The junction of the leading edge and the flat plate is
therefore located at x =1 and the surface of the plate is y = 1/AR where AR is the
aspect ratio of the leading-edge super-ellipse. Flow is from left to right, entering
through the inflow boundary in figure 1(b), and carries with it grid turbulence of
specified characteristics.

The governing equations are discretized on a structured C-mesh wrapped around
the body, as shown in figure 1(b). For each case the two-dimensional grid generated
consists of 720 × 97 points, of which 96 streamwise grid points are below the line
of symmetry. As the geometry used herein is symmetric, simulation on one side of
the body is sufficient. The domain in the lower half is therefore truncated to reduce
computational cost. The two-dimensional grid is split into zones I and II with 53
and 44 points respectively in the wall-normal direction, and 80 and 40 points in
the spanwise direction which has a dimension of 0.24, chosen to ensure sufficient
de-correlation in the spanwise direction. The adequacy of the spanwise dimension is
demonstrated through the spanwise two-point correlation of streamwise velocity u in
figure 1(c). For a separation half the box size, the correlation drops to below 0.1 over
the entire length of the plate indicating de-correlation of the spanwise structures for
the given size. The total number of grid points in each case is 4.3 million. In cases
A and B (introduced in later), the streamwise extent of the domain used was shorter,
with only 640 grid points.

Simulations are initialized with a two-dimensional laminar flow solution over the
flat plate with the leading edge. All simulations are conducted at a free-stream Mach
number of 0.5 and a Reynolds number of Re = U∞a/ν = 50 000. The plates are at
zero angle of attack and nominally in a zero pressure gradient flow. The laminar flow
is obtained by first solving the compressible potential flow over the body, and then
using the result to initialize a two-dimensional Navier–Stokes simulation. The code
developed in Xiong (2004), following the work of Collis (1997) is used to obtain the
steady laminar flow solution.

The laminar flow solution so obtained is used to initialize a three-dimensional
turbulent flow simulation in which free-stream turbulence, obtained from simulations
of homogeneous isotropic turbulence, is imposed at the inflow boundary. The isotropic
turbulence simulations are carried out in boxes of size 4.8 × 1.152 × 0.24 in the x-,
y-, and z-directions respectively, and use 400 × 96 × 32 grid points. These simulations
are initialized with the von-Kármán spectrum

E(k) =
u2

rms

C
L

(kL)4

(1 + (kL)2)p
exp(−αk(kL)2) (2.17)
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Case A Case B Case C Case D Case E

Leading edge AR10 LE AR10 LE AR10 LE AR6 LE AR6 LE
Turbulence intensity T u 3.5 4.5 4.5 4.5 3.5
Integral scale L 0.03 0.03 0.045 0.045 0.03

ReL = L
√

3urms/ν 90 117 175 175 90

Table 2. Summary of simulations conducted.

where an exponential damping has been added at high wavenumbers to avoid
instabilities in the transient. The exponent p = 17/6, and the normalization constant
is

C =

√
πΓ (1/3)

4Γ (17/6)
. (2.18)

The high-wavenumber damping changes the characteristics of the initial field from
those of the von Kármán spectrum. The desired characteristics are obtained by trial
and error. The field is time advanced till the required length scale and intensity are
reached. For each bypass transition simulation, many such realizations of isotropic
turbulence are obtained, and the resulting boxes are joined using the procedure of
Xiong, Nagarajan & Lele (2004) to provide the long time record required at the inflow
plane. The incoming turbulence field is imposed in the form of a boundary condition
along the inflow boundary (see figure 1b) using the one-dimensional unsteady form of
the linearized characteristic-based boundary condition of Giles (1990). The turbulence
field along the inflow boundary is multiplied by a damping function that takes the
value 1 along the inflow boundary upstream of the leading edge and reduces to 0
on the same boundary above the plate. The outflow boundary, which intersects the
boundary layer developing on the flat plate is specified using the parabolized form of
the Navier–Stokes equations (Collis 1997) with an imposed pressure gradient that is
obtained from the compressible potential flow solution.

In addition to the leading-edge aspect ratio, the characteristics of the imposed
free-stream turbulence are also varied for a total of five simulations, summarized in
table 2.

Cases A to C use AR10 LE whereas cases D and E use AR6 LE. Between cases A
and B, the only parameter that differs is the intensity of the free-stream turbulence.
Comparing these two cases therefore brings out the effect of turbulence intensity on
transition. From case B to C, the integral scale of free-stream turbulence is changed
to study the effect of length scale on transition. The effect of leading-edge bluntness
is may be assessed by comparing cases C and D and also cases E and A.

2.3. Resolution check

Simulations of transitional and turbulent boundary layers have evolved to an extent
that the resolution requirements are now known a priori. Based on their numerical
experiments and simulations conducted earlier, Jacobs & Durbin (2001) show that a
resolution of about �x+ ∼ 15 and �z+ ∼ 8 is required for accurate prediction of skin
friction in a transitional boundary layer. Lower resolution usually causes the skin
friction to overshoot the turbulent value post-transition. On the other hand, the first
grid point in the wall-normal direction usually needs to be below �y+ = 0.4.

The maximum value of the mean friction velocity uτ in each case is used to quantify
the resolution of the simulations. The resolution in terms of wall units for the five
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�x+ �y+
w �z+ Ngrid

Case A 41 0.50 8 3.8
Case B 45 0.54 9 3.8
Case C 45 0.54 9 4.3
Case D 49 0.78 10 4.3
Case E 49 0.78 10 4.3
Jacobs & Durbin (2001) 12 < 0.4 6 71

Table 3. Resolution in wall units. Ngrid is the number of grid points in millions.

simulations is shown in table 3. Also shown are the corresponding values used by
Jacobs & Durbin (2001). It should be kept in mind that the high-order compact
schemes used here have much better resolving power (Nagarajan, Lele & Ferziger
2003) than the second-order staggered method used by Jacobs & Durbin (2001). As
a result, half the number of grid points in each direction provide similar accuracy as
Jacobs & Durbin (2001). A grid resolution of �y+ < 0.4 at the wall is fine enough
to resolve the viscous sublayer. The spanwise resolution in the boundary layer, of
the order of �z+ ∼ 8 − 10, is comparable to that of Jacobs & Durbin (2001). This
is also fine enough to resolve most spanwise scales. Note also that the wall-normal
and spanwise grid become much coarser away from the wall. The overall resolution
of these simulations is comparable to that of Jacobs & Durbin (2001) inside the
boundary layer, except in the streamwise direction in which the grid size is larger in
the present simulations. While the flow in the boundary layer is fairly well resolved,
in zone II the smaller number of spanwise grid points along with stretching in the
wall-normal direction makes our simulations LES in this region, especially in the
region upstream of the flat plate.

3. Characterization of mean flow field and turbulence
3.1. Laminar flow over the blunt-nosed flat plate

The grid size in the free stream (above the flat plate) needs to be small enough to
resolve the free-stream turbulence. As a result, the vertical size of the domain is limited
by computer constraints; a large domain will need a large number of grid points.
This size limitation causes the mean velocity, and therefore the Reynolds number, on
the flat plate to be different from the imposed free-stream condition. The streamwise
velocity along the inflow boundary, from the stagnation to the outflow plane, is shown
in figure 2(a) for the two bodies. The velocity does not recover the free-stream value
of 0.5 in either case. The corresponding pressure coefficient Cp =2(p − pref)/ρrefU

2
ref,

where the reference quantities have been chosen to be the mean value above the flat
plate, is shown in figure 2(b). Even though the velocity and pressure over the flat plate
are not equal to the respective free-stream values, both remain fairly uniform over
the entire length of the flat plate, a characteristic of zero-pressure-gradient boundary
layers. This is also shown in figure 2(c), which plots the pressure gradient parameter
λ defined as

λ =
θ2

ν

dU

dx
(3.1)

that is used to characterize boundary layers with pressure gradients. The parameter
shows a favourable and an adverse pressure gradient region near the leading edge.
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Figure 2. Laminar flow characteristics of the two leading edges. (a) Streamwise velocity along
the inflow boundary. (b) Pressure coefficient Cp along the surface of the plate as a function
of x. (c) Pressure gradient parameter λ= (θ2/ν)(dU/dx) as a function of x. (d) Streamwise
development of square of displacement thickness (δ∗), square of momentum thickness (θ ), and
shape factor (H = δ∗/θ ). In (a–c), , AR10 LE; , AR6 LE. In (d) , δ∗2

AR10 LE;

· , δ∗2

AR6 LE; , θ2 AR10 LE; · · · ·, θ2 AR6LE; , H AR10 LE; ·· , H AR6
LE.

Furthermore, λ is very close to zero over the entire length of the flat plate, indicating
that the boundary layer is indeed a zero-pressure-gradient one.

The primary effect of incomplete recovery of the free stream is a change in the
effective Reynolds number, which may be estimated from the development of the
boundary layer displacement thickness over the flat plate. In figure 2(d), the square
of the displacement thicknesses δ∗ over the two flat plates is plotted as a function of
streamwise location x. The Blasius boundary layer relation between δ∗ and x (White
1991) is used to estimate the Reynolds number based on reference length a as

Rea =
Ua

ν
=

1.72082

dδ∗2
/dx

.

Alternatively, the effective Reynolds number may be evaluated from the development
of the square of the momentum thickness θ2 with streamwise distance x, also shown in
figure 2(d). The two values obtained independently from displacement and momentum
thickness are within 1 % of each other. Their average is taken to be the Reynolds
number, which is 54 000 and 57 000 for AR10 LE and AR6 LE respectively. Using
Blasius boundary layer theory, a virtual origin can also be located. For the boundary
layer developing over the flat plate, this corresponds to the location at which the
boundary layer would have zero thickness. For AR10 LE and AR6 LE, the virtual
origins are 0.19 and 0.28 non-dimensional units upstream of the actual stagnation
point. In the results presented in the following sections, the distance from the leading
edge x and the Reynolds number Rex = Ux/ν are used interchangeably. The two
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Figure 3. (a) Streamwise variation of decay of various components of kinetic energy in case
A. , k; , curve fit using equation (3.4); · , u2; · · · ·, v2; , w2. (b) Streamwise
variation of anisotropy urms/vrms of the free-stream turbulence above the plate. , case A;

· , case B; · · · ·, case C; , case D; ·· , case E.

variables are related through the quantities Rea and the virtual origin x0. For the two
leading edges, the expressions that relate x and Rex are

Rex = (x + 0.19) × 54000 for AR10 LE, (3.2)

Rex = (x + 0.28) × 57000 for AR6 LE. (3.3)

3.2. Downstream development of free-stream turbulence

Precomputed homogeneous isotropic turbulence is imposed at the inflow boundary
upstream of the leading edge, i.e. on the vertical portion of the inflow boundary.
The imposed field is damped to zero as the inflow boundary turns and becomes
horizontal. In the vertical region, the mean velocity is fairly uniform (see figure 2(a)
in the region x < −0.1) and therefore its distortion effect on turbulence is not expected
to be significant. It should be noted that even though there will be some distortion
of turbulence by small gradients upstream of the inlet, the bulk of the distortion is
due to the mean velocity gradients inside the domain. The resulting turbulent field
that interacts with the boundary layer developing on the flat plate is therefore non-
isotropic. Figure 3(a) shows the development of the RMS of velocity fluctuations in
the free stream (2.5δ99 away from wall, where δ99 is the 99 % thickness of the laminar
boundary layer) from the simulation case A. As a result of distortion of turbulence
by the leading edge, usually in the form of stretching and tilting of vortices initially
oriented in the y-direction, the level of streamwise velocity fluctuation is lowered
while the spanwise and wall-normal components are increased, a trend evident in
all simulations. This process continues in the outer region as turbulence convects
downstream, till it reaches a point where the mean flow becomes more uniform and
the associated mean strain rate reduces. For all cases, this occurs around x ∼ 0.5, and
the turbulence starts to recover downstream of this location. This is more evident
from the location of minima in figure 3(b) which shows the anisotropy u/v versus
downstream distance. As the amplification of v exceeds that of w, the measure u/v is
consistently lower than u/w. For the case of the blunter leading edge, the turbulence
becomes more anisotropic with u/v ∼ 0.72 compared to ∼ 0.77 for the sharper leading
edge.

It is common practice to express the decay of kinetic energy k in grid turbulence
in the form of a power law

k

U 2
∞

= A (x − x0)
−n (3.4)
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Case A B C D E

n 1.34 1.43 1.53 1.54 1.32

Table 4. Decay exponent for free-stream turbulence.
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Figure 4. Skin-friction coefficient Cf as a function of Reynolds number (a) Rex and (b) Reθ .
, Case A; · , Case B; · · · ·, Case C; , Case D; ·· , Case E; , Blasius

boundary layer and turbulent boundary layer correlation; �, Case T3A; �, Case T3B of
Roach & Brierley (1992).

where the exponent n represents the rate of decay, x0 is the virtual origin and A is
a normalization constant. In the literature, values of n over a very wide range have
been reported but n= 1.3 may be considered representative (Mohamed & LaRue
1990). The decay exponent n for turbulence above the flat plate is evaluated using a
least-squares fit for k using equation (3.4). In evaluating the exponent, the anisotropic
initial portion of the field (over the leading edge) is ignored. The resulting values of
the exponent are tabulated in table 4. Due to anisotropy, the agreement between the
turbulence and the curve fit is not as good as one would get for isotropic turbulence.
Case E which corresponds to the most energetic turbulence undergoing the maximum
amount of distortion shows the largest deviation from the curve fit at upstream
locations. However, for this as well as all other cases, the decay exponent remains
fairly close to the accepted value, and within the range reported in the literature.
They are, in general, higher for lower Reynolds numbers. Cases A and E and C and
D use the same turbulence field with different leading edges. The decay exponents
are, however, quite close.

3.3. Mean flow and statistics in the boundary layer

In figures 4(a) and 4(b), the coefficient of skin friction is shown as functions of Rex

and Reθ , respectively. For Rex < 50 000, the skin friction is lower than the Blasius
value even though the boundary layer is laminar. This is due to the fact that this
Reynolds number range corresponds to the leading-edge region with a slight adverse
pressure gradient (see figure 2b) which causes the boundary layer to thicken, thus
lowering the skin friction. Downstream of the leading edge, in case A, the skin-friction
coefficient shows signs of recovering the laminar value, as evident from the change
in slope around Rex ∼ 60 000 and Reθ ∼ 160 in figures 4(a) and 4(b) respectively.
However, due to forcing by the imposed free-stream turbulence, the boundary layer
is no longer laminar. In this buffeted boundary layer driven by external turbulence,
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Case U∞ (m/s) Tu L (mm)

T3A 5 3 9
T3B 9.2 6 12.5

Table 5. ERCOFTAC cases T3A and T3B from Roach & Brierley (1992). The integral
length scales are the estimates of Johnson & Ercan (1999).

the skin-friction coefficient is higher than the laminar value, and continues to be so
until the onset of transition around Reθ ∼ 300. On the other hand, cases B through E
never recover fully from the adverse pressure gradient effect. Transition onset occurs
around Reθ ∼ 200, immediately downstream of the leading edge. Of these, only case
B shows some sign of recovery from the pressure gradient effect.

Also shown in figure 4(a) are the laminar Blasius value and the turbulent correlation
(White 1991)

Cf =
0.455

ln2(0.06Rex)
. (3.5)

Since the correlation is based on Rex , curves corresponding to each simulation on
the Cf vs. Reθ plot are different in the turbulent zone. As the turbulent correlation
shown in figure 4(b) corresponds to case B, the other cases, especially case A, show
some scatter from this curve. On the other hand, all five simulations agree with
the turbulent correlation on the Cf versus Rex plot shown in figure 4(a). Note that
the skin-friction overshoot above the turbulent correlation is very small. Jacobs &
Durbin (2001) observed this to be a function of the streamwise resolution of the
boundary layer. The small overshoot indicates that the resolution in these simulations
is adequate.

The simulation conditions were not chosen to match any particular experiment.
However, as seen from table 5, the conditions for simulation case A results are
compared to the ERCOFTAC transition case T3A (Roach & Brierley 1992). The
experiment is conducted at a free-stream turbulence level of 3 % and the characteristic
length scale of free-stream turbulence is 4δ99 where δ99 is the laminar boundary layer
99 % thickness at a Reynolds number of Rex = 50 000. The turbulence intensity at the
inflow plane in case A is comparable to T3A whereas the length scale is only 1.3δ99.
Therefore, at a comparable location, the turbulence level in the simulation is lower
while there is a factor of three difference in length scales between the experiments
and simulation. Furthermore, the leading edge in the simulation is much blunter than
the one used in the experiments. Therefore, the comparison between case A and
experiments should be taken as a qualitative confirmation of the transition process
rather than a strict quantitative comparison. The variation of skin-friction coefficient
Cf with Reθ is in good agreement with experimental data, as shown in figure 4(b).
In the simulations, as in the experiments, the skin-friction coefficient indicates that
transition onset is around Reθ ∼ 300 and is complete by Reθ ∼ 600. However, the
simulated skin-friction coefficient in the pre-transitional buffeted boundary layer is
slightly higher than in the experiment (which remains fairly close to the Blasius value).
This trend, also seen in the results of Jacobs & Durbin (2001), may be attributed
to the smaller turbulence length scale in the simulations. Due to the smaller length
scale, the free-stream turbulence in the simulations has more energy in structures with
characteristic spanwise length scales comparable to the boundary layer thickness.
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Figure 5. (a) Normalized profiles of RMS velocity fluctuation compared to optimal distur-
bances. , Optimal disturbance; , Crow (1966); �, Rex = 6 × 104; �, Rex =8 × 104;
�, 10 × 104; �, 12 × 104. (b) Evolution of mean velocity profiles in case A compared to the
experiments of Roach & Brierley (1992). Symbols are experimental data points �, Reθ = 225;
�, Reθ = 385; �, Reθ = 456; , U+ = y+; · · · ·, Log law. (c) Profiles of RMS velocity
fluctuation at Reθ =456 compared to the experiments of Roach & Brierley (1992). Symbols
are experimental data points �, u+; �, v+; �, w+. (d) Profiles of RMS wall-normal velocity
fluctuation. , Reθ = 220; , Reθ =225; · , Reθ = 230; �, Roach & Brierley (1992)
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These structures affect the pre-transitional region as they penetrate into the boundary
layer far more effectively (Andersson et al. 1999; Luchini 2000; Leib et al. 1999). Mean
velocity profiles based on wall units are compared at three values of Reθ in figure 5(b).
Profiles are in agreement over a wide range of Reynolds numbers over which the
boundary layer develops from a laminar to a turbulent one. However, the simulation
does not include a fully turbulent boundary layer and a distinct logarithmic region
is therefore absent. Profiles of RMS velocity fluctuation at Reθ = 456 are shown in
figure 5(c). The computation slightly under-predicts levels in the RMS velocity but is
in very good qualitative agreement with experimental observations. Jacobs & Durbin
(2001) observe that the v+ profile from the experiment shows a peak near y+ ∼ 25 for
Reθ = 225, which was absent in their simulation. The profiles at and near Reθ =225
from the present computation, shown in figure 5(d), have a minor peak that is much
smaller than in the experiment.

A comparison between normalized RMS streamwise velocity profiles and linear
optimal disturbances (Andersson et al. 1999; Luchini 2000) is shown in figure 5(a).
Also shown is the result from the analysis of Crow (1966) (this expression was first
used by Taylor 1939). The RMS velocity profiles are in the pre-transitional region
(Rex = 60 000 to = 120 000) and normalized by the local maximum in the RMS
profile. The disturbances in the pre-transitional region are in good agreement with
the optimal streak as well as the perturbed boundary layer analysis.
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Figure 6. Vortices identified by an iso-surface of λ2. (a–c) Cases A, B, and E.

The skin-friction plots 4(a) and 4(b) also reproduce the trends observed in experi-
ments. With an increase in the turbulence intensity from case A to case B, onset
of transition moves upstream as has been observed in many experiments (Roach &
Brierley 1992; Westin et al. 1994; Matsubara & Alfredsson 2001). This effect is well
known and is included in correlations such as those of Abu-Ghannam & Shaw (1980).
Furthermore, as observed in the experiments of Jonas, Mazur & Uruba (2000), the
increase in the integral length scale from case B to C, while holding the intensity
fixed, also moves the transition location upstream.

4. The mechanisms of transition
The results from the previous section show a clear effect of the leading edge on

the onset of transition. Under given free-stream conditions, a blunter leading edge
exhibits earlier onset and completion of transition. Furthermore, as will be shown
in this section, increasing the intensity of the free-stream turbulence also moves
transition upstream through a similar process, though other well-known effects of
intensity and length scale on bypass transition are also at play. To understand these
effects, cases A, B and E are studied further. Cases C and D also show similar trends,
but are not included as the differences between them are not large enough to throw
enough light on leading-edge effects.

4.1. Distortion of turbulence by the leading edge

Goldstein & Wundrow (1998) argue that the distortion of turbulence by the mean flow
around the leading edge causes wake-like disturbances in the free-stream turbulence
to be transformed into streamwise aligned vortices. These vortices then penetrate
into the boundary layer to form Klebanoff modes. In subsequent work, Wundrow &
Goldstein (2001) analyse the effect of streamwise vorticity in the free stream on a
boundary layer and show that it can lead to low- and high-speed streaks. Clearly,
the leading edge does cause amplification of streamwise vortices, as can be seen from
the anisotropy in figure 3(b). To see the extent of this amplification, vortex cores are
identified using the λ2 method of Jeong & Hussain (1995), wherein a vortex is defined
to be a region where two eigenvalues of the tensor S2+Ω2 are negative, i.e. the regions
inside iso-surfaces of λ2 = 0, where the λ are the eigenvalues arranged in increasing
order. Generally, λ2 = 0 has been found to be an inadequate criterion. Vortices are
better identified by λ2 = C, where C is a negative number. In figure 6, iso-surfaces
of λ2 = −15 are shown in the leading-edge region. The vortices in case A are weaker
and less numerous than in case B. This is to be expected as the FST in case A is
less intense and therefore the free-stream vorticity level is lower. Furthermore, leading
edge vortices in case A are also less intense than case E because the total distortion
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Figure 7. Plan-view (x, z-plane) of the flat plate from case A showing streaks, a turbulent
spot and an incipient spot. z-coordinate is magnified by a factor of 2. (a) Snapshot of
u-velocity (−0.1 <u/U∞ < 0.15). (b) Snapshot of v-velocity (−0.04 <v/U∞ < 0.04). (c) Snapshot
of w-velocity (−0.08 <w/U∞ < 0.08).

in case A is lower. The vortex visualization plots also indicate that the vortices in
cases B and E extend further downstream from the leading edge than in case A.

4.2. Bypass transition – case A

Pre-transitional boundary layers forced by free-stream turbulence have been observed
(Klebanoff et al. 1962; Kendall 1991; Westin et al. 1994; Matsubara & Alfredsson
2001) to contain streamwise elongated streaks with a spanwise scale comparable to
the boundary layer thickness. It has also been shown that streamwise aligned counter-
rotating vortices can cause alternating high- and low-speed streaks in the boundary
layer through transient growth (Andersson et al. 1999; Luchini 2000). It has also been
proposed in the literature that bypass transition occurs due to a secondary instability
of the streaks (Andersson et al. 2001; Brandt & Henningson 2002) wherein sinuous
and varicose streak modes come into play. While the backward jet mechanism of
Jacobs & Durbin (2001) seems to be the same as the streak sinuous mode, they do
not report the varicose mode.

In this section, it is demonstrated that such a path (streak instability/backward jet)
to transition exists when the leading edge is sharp and the turbulence relatively weak
(case A). Boundary layer streaks along with a turbulent spot and a fully turbulent
zone are evident in figure 7 which shows snapshots of velocity fluctuations from case
A. It should be kept in mind that, for improved clarity, the z-axis has been magnified
by a factor of 2. The streaks and spots are therefore much narrower than they appear.
The streamwise component of the velocity shows distinct low- and high-speed regions
upstream of the spot. In fact, these streaks persist even downstream of the turbulent
spot. This suggests that the spots are formed by local instabilities and not a global
streak instability. The structures inside the turbulent spot are more evident in the
snapshot of wall-normal and spanwise velocity fluctuations. A zoomed-in view of the
spot is shown in figure 7. Clearly, the length scales inside the spot are much shorter
and more diverse than in the buffeted boundary layer. This broadband nature is
characteristic of turbulent flow. As in the simulations of Jacobs & Durbin (2001) and
Brandt et al. (2004), spots are formed by instabilities growing on low-speed streaks.
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Figure 8. Cross-section (z, y-plane) of the turbulent spot from figure 7. Contours of streamwise
velocity and velocity vectors in the plane. y-coordinate is magnified by a factor of 2. The line
denotes the edge of the boundary layer.

Figure 9. Visualization, in the (x, y)-plane, of the early stages of the spot from figure 7.
Wall-normal velocity contours with velocity vectors in the plane. y-coordinate is magnified by
a factor of 2. The line denotes the edge of the boundary layer.

A visualization of a spot cross-section in figure 8 shows the large velocity vectors in
the (z, y)-plane to be concentrated in regions of low streamwise velocity, indicated by
dark colours. The instigation of instability of a low-speed streak is seen in figure 9
that shows an (x, y)-plane passing through an incipient spot. The velocity vectors in
the plane show the low-speed streak interacting with a free-stream eddy depicted by
contours of wall-normal velocity. Plan-views of contours of streamwise, wall-normal
and spanwise velocities in figures 10(a), 10(b) and 10(c) show the early stages of a
spot. The instability is triggered in the outer half of the boundary layer and the fluid
close to the wall remains unaffected in the early stages of spot formation. This can be
seen from figure 10(d) wherein the spanwise velocity disturbance is seen to be large
at y/δ99,loc ∼ 0.5 (δ99,loc being the local laminar boundary layer 99 % thickness) and
decays rapidly towards the wall. At y/δ99,loc ∼ 0.25, the disturbance is small whereas it
is fairly prominent at y/δ99,loc ∼ 0.75. The lower part of the boundary layer (and hence
the skin friction) is affected only after the instability grows and further breakdown
leads to spot formation. Therefore, it may be concluded that when leading-edge
effects are unimportant, as in case A, formation of turbulent spots occurs through the
instability brought about by interaction of a low-speed streak with a free-stream eddy,
as observed by Jacobs & Durbin (2001) and Brandt et al. (2004). However, when
leading-edge effects are dominant, other mechanisms take over, as demonstrated in
the remainder of this paper.
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Figure 10. Structure of the low-speed streak sinuous mode/backward jet precursor to a
turbulent spot from case A. Shown are plan views of (a) u-, (b) v- and (c) w-velocity contours
on a plane at y = δ99,loc/2. (d) Spanwise velocity fluctuation versus streamwise coordinate. ,
y/δ99,loc =0.25; , y/δ99,loc = 0.5; · , y/δ99,loc = 0.75.

4.3. Transition with leading-edge effects – cases B to E

In this section, the primary effect of the leading edge is introduced. In figure 11, a
sequence of snapshots tracks the formation of turbulent spots in case B. The plan-
view shows contours of spanwise velocity fluctuation at a distance of y ∼ δ99/4 from
the wall, where δ99 is the boundary layer thickness at the junction of the leading
edge and the flat plate. Wavepacket-like precursors to spots are clearly visible in these
snapshots. They appear to grow over the background disturbance inside the boundary
layer, and eventually dominate the motion. They then continue to grow in size and
increase in amplitude before breaking down into a patch of turbulence. Time sequence
snapshots of spanwise velocity in a spot precursor are shown as a function of the
streamwise coordinate in figure 12. The first snapshot in this time sequence shows a
small-amplitude wavepacket-like disturbance. In the second and third snapshots, the
amplitude of the disturbance increases as does the number of crests and troughs. In
the fourth and fifth snapshots, the distinct wavepacket structure is lost as energy shifts
to lower as well as higher wavenumbers. Subsequent snapshots show the appearance
of many more length scales and the formation of a spot. From the transition process
observed from these pictures the low-speed streak instability route can be discounted.
This is illustrated by a magnified view of the u, v and w velocity fluctuations in a
precursor to a spot from case B shown in figures 13(a), 13(b) and 13(c) respectively.
The structure is wavepacket-like in the streamwise direction. This structure of the
spot precursor is shown in figure 13(d) where the spanwise velocity is plotted versus
the streamwise coordinate. There is a clear dominant wavelength corresponding to
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Figure 11. Plan-view (x, z-plane) of the flat plate from case B showing incipient spots, their
growth and eventual merger with the fully turbulent boundary layer. Snapshots of w-contours
(−0.08 <w/U∞ < 0.08) separated by �t = 0.75. z-coordinate is magnified by a factor of 2. The
implied spot trailing- and leading-edge velocities are 0.55U∞ and 0.73U∞ respectively.

the oscillations inside the wavepacket, and an amplitude envelope that decays rapidly
towards the edges of the structure. In addition, the streamwise velocity contours show
that the precursor is overlaid on streaks in the boundary layer, but is not located
on a low-speed streak, an essential component of the sinuous instability route to
transition observed by Brandt et al. (2004) and Jacobs & Durbin (2001) as well as in
case A. As a demonstration of the universality of spot precursors in cases B to E, the
x-variation of spanwise velocity in a precursor from case E is shown in figure 14(b).
All the spot precursors examined in cases B, C, D and E show such a wavepacket-like
structure.

The turbulence level in case A is 3/4 that of case B, while all other parameters
are the same. Due to such a small difference in the conditions, one might expect to
occasionally see turbulent spots being formed by the same mechanism that operates
in cases B to E. It has been observed that turbulent spots are indeed formed from
wavepacket-like spot precursors in case A as well. For example, the incipient spot in
the middle of the domain in figure 7 is preceded by steepening and breaking down
of precursors inside the boundary layer. Therefore, in case A, both mechanisms
of spot formation are present: (i) breakdown through interaction of low-speed
streaks with free-stream disturbances, and (ii) through spot precursors. However, the
second mechanism occurs infrequently and most turbulent spots are formed by the
first.
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Figure 13. Structure of the precursor to a turbulent spot from case B. Shown are plan views
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4.4. Characterization of spot precursors

A typical precursor to a turbulent spot is studied in detail to provide a complete picture
of their characteristics. In figure 16(a), contours of spanwise velocity are shown in an
(x, y)-plane passing though a wavepacket. Unlike the disturbances in figure 10 that
are typical of bypass transition by low-speed streak instability, this is confined to the
lower half of the boundary layer as also depicted in figure 16(b) where the spanwise
velocity fluctuation is shown versus the streamwise coordinate at three wall-normal
locations, y/δ99,loc = 0.25, 0.5 and 0.75, δ99,loc being the local laminar boundary layer
99 % thickness. The amplitude of the oscillations is higher closer to the wall, and
decreases rapidly away from the plate. Wall-normal profiles of disturbance velocities
shown from case E in figure 16(c), while confirming that these wavepackets inhabit
the lower half of the boundary layer, also highlight another difference between the
formation of turbulent spots in this case and the sinuous streak instability. The spot
precursor is localized in a region of large surplus velocity with respect to the mean, in
marked contrast to the disturbances in figures 8 and 9 which usually occur in regions
of relatively slow moving fluid. These two fundamental differences are highlighted
in figures 15(a) and 15(b) that show contours of spanwise velocity fluctuations in
an (x, y)-plane passing through the spot precursor, along with in -plane fluctuating
velocity vectors. Figure 15(a) corresponds to the low-speed streak mechanism in the
initial stages of the developed turbulent spot at x ∼ 4.5 in figure 7. The slower moving
fluid (left pointing vectors) and the initial stages of spot development in the outer
half of the boundary layer are evident. On the other hand, 15(b) corresponds to the
initial stages of the nascent spot at x ∼ 2.8 in figure 7. This picture, typical of all
spot precursors formed under leading-edge influence, shows the disturbance to be
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Figure 14. (a) Contours of spanwise velocity fluctuations in a spot precursor in the xy-plane.
From case E with −0.03 <w/U∞ < 0.03. Dashed lines: negative contours. y-coordinate is
magnified by a factor of 2. (b) Spanwise velocity fluctuations versus streamwise coordinate in
a spot precursor. , y/δ99,loc =0.25; , y/δ99,loc = 0.5; · , y/δ99,loc = 0.75. (c) Wall-
normal profiles of fluctuating velocity inside a spot precursor from case E. , u/U∞; ,
v/U∞; · , w/U∞.

concentrated in the lower half of the boundary layer in a packet of fluid moving
faster than the mean.

It should be noted that the wavepackets are analysed only after they have undergone
considerable growth. Due to the presence of FST, it is hard to distinguish these
wavepackets from the background non-uniformity in the buffeted boundary layer. It
is only after sufficient growth in amplitude that these structures can be distinguished
from the other disturbances that invariably exist in the boundary layer. Therefore, the
initial stages of development of these wavepackets cannot be documented in detail.
Furthermore, due to the presence of other disturbances, not all wavepackets appear
as clean as the ones shown earlier. The main problem this poses is in the estimation
of propagation rate of the leading and trailing edges of the wavepacket. Unlike the
experiments of Gaster & Grant (1975) who studied wavepackets introduced into an
otherwise laminar boundary layer, the leading and trailing edges of the wavepackets
that appear in the present simulation are not well defined. In fact, as the amplitude
decreases towards the leading and trailing edges, contamination from other sources
dominates, and the signature of the wavepacket is lost.

A total of eight wavepackets from cases A, B and E were analysed. The dominant
wavelength of a wavepacket is defined as the average distance between consecutive
peaks and the average group velocity of a wavepacket is determined by measuring the
distance the highest crest (or lowest trough) moves in a given small time interval. The
dominant frequency is then evaluated using the wavelength and velocity so obtained
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Figure 15. (a) Side-view (x, y-plane) of contours of spanwise velocity (levels: −0.1 <w/U∞ <
0.1) and vectors of velocity fluctuation in plane. Early stages of the backward jet mechanism.
(b) Side-view (x, y-plane) of contours of spanwise velocity (levels: −0.06 <w/U∞ < 0.06) and
vectors of velocity fluctuation in plane. A wavepacket-like spot precursor.

and renormalized using the standard form used to characterize TS waves:

F =
ων

U 2
∞

.

It should to be pointed out that the frequency calculated from the wavelength and
group velocity is only an approximate value and is not to be considered as exact. As a
wavepacket consists of many wavelengths, with each moving at its own phase speed,
the group velocity can be significantly different from the phase speed of an individual
mode. However, at low values of Reδ , the dispersion relation is close to linear (see
Jordinson 1970) and therefore the group velocity can yield a fair approximation to
the frequency. This procedure is used only to determine whether the disturbances are
Tollmien-Schlichting waves.

The result of such a characterization process is presented in table 6, arranged in
order of the distance from the leading edge where the wavepackets grow to large
enough amplitudes to be discerned from the background fluctuations. Also indicated
in the table is the simulation from which each spot is taken. The data indicate that
spots that are seen further downstream have larger wavelength, and therefore lower
frequency than those upstream. The speed at which individual crests or troughs
travel varies from around 0.52U∞ to 0.6U∞ which is seen to be close to the speed at
which the trailing edges of the wavepackets travel. On the other hand, the leading
edges travel at somewhat higher speeds of around 0.7U∞. Based on simple scaling
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Case Wavelength Speed Frequency Distance
λ u/U∞ F × 106 xLE

A 0.12 0.59 492 2.3
B 0.089 0.514 670 0.75

0.086 0.528 714 0.8
0.095 0.519 635 1.4

E 0.079 0.55 800 0.7
0.086 0.56 757 0.75
0.115 0.58 585 1
0.135 0.56 481 1.05

Table 6. Summary of properties of wavepackets from cases A, B and E. xLE is the distance
from the leading edge where the wavepacket is first discerned.

using the wavelength in the wavepacket and its speed of travel, the frequency F

is seen to lie in the range 500 to 800, much higher than typical frequencies of TS
waves.

4.5. A discussion of wavepackets in a boundary layer

The wavepacket nature of the structures that lead to spot formation is reminiscent
of natural transition through TS waves. Natural transition occurs when unstable
TS waves grow (usually in a two-dimensional sense), modulate in the spanwise
direction, and break down. Non-uniformity can cause TS waves to occur in the
form of wavepackets that have been studied in controlled experiments by Gaster &
Grant (1975) and analysed by Gaster (1968). The downstream development of the
wavepacket in the experiments of Gaster & Grant (1975) occurred at group velocities
in the TS range, with the leading and trailing edges of wavepackets travelling at
speeds of 0.44U∞ and 0.36U∞ respectively. As the wavepacket evolves, it spreads in the
spanwise direction. Eventually, certain oblique modes grow very rapidly and become
large enough for nonlinearity to occur. Similar phenomena were observed by Cohen,
Breuer & Haritonidis (1991) who tracked wavepackets from their inception, through
linear growth and nonlinear evolution, to the eventual formation of turbulent spots.
The dominant frequency in the wavepackets in this experiment corresponds to the
most unstable one, which is around β = ωδ∗/U∞ ∼ 0.1 (Jordinson 1970; Drazin & Reid
1981). In terms of the frequency parameter F , at the conditions of the experiment, this
translates into F × 106 ∼ 80. Further downstream, the peak shifts to the subharmonic
at β ∼ 0.05. The experimentally observed maximum frequency at which TS waves
are unstable corresponds to F ∼ 400. The wavepackets generated in experiments
(Gaster & Grant 1975; Cohen et al. 1991) contain frequencies centred around the
most unstable TS frequency. However, the wavepackets in the present simulations can
contain only higher frequency unstable TS waves as they occur at Reynolds numbers
close to branch I of the boundary layer stability boundary. At these Reynolds
numbers, frequencies of growing disturbances lie in a narrow band around the
frequency that becomes unstable at the critical Reynolds numbers. Furthermore, the
boundary layer on the leading edge is subject to an adverse pressure gradient, causing
the region of instability in the Reynolds number–frequency plane to be significantly
larger (Wazzan 1975; Govindarajan & Narasimha 1995). For Falkner–Skan flows
with adverse pressure gradients similar to those that exist in the leading-edge region,
the range of unstable frequencies is much larger than for the Blasius boundary layers
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(see figure 14 in Wazzan 1975). In fact, for m = −0.025 (where m is the exponent
in the Falkner–Skan velocity profile U =Cxm), the maximum unstable frequency is
twice that of a Blasius boundary layer. Therefore, higher unstable frequencies exist
which may account for the observed higher frequencies in the spot precursors.

The wavepackets observed in the simulations travel at a mean speed of 0.52U∞.
Therefore, the leading- and trailing-edge speeds can be expected to be larger than
those for the TS wavepackets. Furthermore, the frequency and speeds from the
experiments of Cohen et al. (1991) indicate a dominant wavelength of λ∼ 8δ99,loc

while the wavelength in the simulations is around λ∼ 5δ99,loc. The higher speed
and shorter wavelengths also translates into the higher frequencies observed in
table 6 when compared to experiments. It can therefore be concluded that the
spot precursors observed in the simulations are not TS wavepackets. It should be
noted that the characteristics of the wavepackets excited in controlled experiments
also show significant dependence on the level of excitation. At very small amplitudes,
such as those in the experiments of Gaster & Grant (1975) and Cohen et al. (1991),
the wavepacket leading and trailing edges travel at speeds of 0.44U∞ and 0.36U∞
respectively. On the other hand, as the level of excitation is increased, such as in
the experiments of Vasudeva (1967), the leading- and trailing-edge speeds increases
considerably to 0.8U∞ and 0.6U∞. Another experiment where high forcing was used
is the study of incipient spots by Amini & Lespinard (1982) wherein the speeds were
0.95U∞ and 0.5U∞. This change in speed is probably due to the fact that a higher
level of forcing in experiments (usually applied at the plate surface) is better able
to excite waves at the outer edge of the boundary layer where the mean velocity is
higher. The resulting wavepacket then moves with this higher speed. The wavepackets
from the present simulations lie somewhere in between the weak and strongly forced
experiments.

The stability of a nonlinearly saturated steady streak in a boundary layer was
studied by Brandt et al. (2003) by observing the response of the streak to an impulsive
force. The streak instability was shown to be convective in nature, with the resulting
wavepacket moving with a trailing-edge velocity of 0.7U∞. They concluded that their
wavepacket, induced by spanwise shear further away from the wall than TS waves, is
inviscid. While Brandt et al. (2003) noted their instability to be of the sinuous kind,
there is an apparent symmetry of the leading-edge-induced wavepackets, as seen in
figures 13(a), 13(b) and 13(c). Furthermore, it is clear that the wavepackets in our
case are located much closer to the wall, and therefore move downstream at slower
speeds, the trailing-edge convecting downstream at around 0.55U∞.

TS wavepackets are only one of many kinds of localized disturbances that can
occur in a boundary layer. Schmid & Henningson (2001) consider the growth of
two other kinds of localized disturbances: axisymmetric jets and counter-rotating
streamwise vortices. These were studied in detail by direct simulation and analysis
for Poiseuille flow by Henningson, Lundbladh & Johansson (1993) and in zero- and
adverse-pressure-gradient boundary layers by Bech, Henningson & Henkes (1998). In
the study by Henningson et al. (1993), temporal simulations were conducted with a
specified initial disturbance, and their subsequent evolution tracked. The contours of
wall-normal velocity fluctuation in figure 14(b) appear qualitatively similar to those
of an asymmetric small-amplitude streamwise vortex disturbance in Poiseuille flow
(see figure 4 in Henningson et al. 1993). The asymmetry brings about spanwise shear
that dominates the development of the disturbance. Compared to the symmetric
case, Henningson et al. (1993) found that asymmetry increased transient growth
considerably, which was attributed to generation of normal vorticity by normal
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velocity. This contribution to the disturbance kinetic energy was seen to dominate
as the initial disturbance angle (relative to the streamwise axis) was increased. The
wavepackets seen in the present simulations could be a manifestation of this process.
However, the relevance of simulations for Poiseuille flow to a boundary layer is
unclear. A similar initial value problem simulation for the Blasius boundary layer
was carried out by Breuer & Landahl (1990), which was shown by Henningson et al.
(1993) to suffer from under-resolution. Furthermore, the boundary layer simulations
in Henningson et al. (1993) were at much higher Reynolds numbers, and therefore the
difference between symmetric and asymmetric disturbances was not as pronounced
as in Poiseuille flow.

Further simulations involving growth of localized disturbances in zero- and adverse-
pressure-gradient boundary layers have been conducted by Bech et al. (1998). They
study the linear and nonlinear evolution of three kinds of disturbances: a localized
vortex pair, a wavepacket (not to be confused with what we call wavepackets in
this study), and an axisymmetric disturbance in Blasius as well as Falkner–Skan
boundary layers. They find that, in the initial stages, growth is dominated by the
so-called transient growth mechanism leading to algebraic growth, whereas, at later
times, the adverse pressure gradient case exhibits exponential growth. In the zero
pressure gradient case, their wavepacket disturbance also exhibits exponential growth.
However, their simulations were conducted at a Reynolds number of Reδ∗ = 950,
which allows the existence of growing TS waves. On the other hand, the disturbances
observed in the present simulations occur at much lower Reynolds numbers where
exponential growth due to amplification of TS waves is not possible (this does not
imply that exponential growth is impossible, it may still occur due to secondary
instabilities). Comparing figure 15(b) to the corresponding contour plots in Bech et al.
(1998) shows qualitative similarity of our wavepackets with vortex-pair as well as
axisymmetric disturbances. However, Bech et al. (1998) note that the axisymmetric
disturbance is slower to transition. On the other hand, the initial disturbance
containing a vortex pair underwent early breakdown when the initial amplitude
was large enough. Given the similarities of the present transition process with that
of Bech et al. (1998), we can expect the transition induced by the leading edge to
follow a similar path, a possibility that is investigated further in § 5.1 with pairs of
free-stream vortices that interact with the boundary layer.

5. Origin of precursors to turbulent spots
As demonstrated thus far, the same inflow turbulence field leads to different paths

to transition in cases A and E. As the only difference between the two cases is the
geometry of the leading edge, it is reasonable to expect the change in transition
location to be a direct consequence of this difference. Numerical simulations provide
the ability to track flows back in time and identify the cause of the phenomenon
under investigation. Using snapshots of the flow field, the wavepackets are tracked
backwards to their antecedents. Quantitative measures such as the time of travel along
mean streamlines were found to be very sensitive to the choice of the streamline due
to the large velocity gradients around the leading edge and inside the boundary layer.
Tracking of wavepackets visually using a sequence of snapshots was found to be the
most reliable method. One wavepacket from case E is traced back to the leading edge
in figures 16(a) and 16(b). The first snapshot shows the wavepacket in its final form
and the second shows a snapshot at an earlier time when the wavepacket is spawned.
An analysis of many such wavepackets show that almost all of them are created when
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Figure 16. (a) A spot precursor from case E. (b) Antecedent, at the leading edge, of the
structure in (a). (c) Antecedent to a spot precursor traced back to vortices at the leading
edge, identified by iso-surfaces of λ2. Vortices shown at the time instant corresponding to the
snapshot in (b). Arrow indicates the vortex responsible for inducing the antecedent.

strong spanwise flow occurs in the leading-edge region. A visualization of the vortex
tubes (identified using the λ2 method of Jeong & Hussain 1995) in figure 16(c) in the
leading-edge region also shows a strong vortex wrapped around the leading edge at
the spanwise location of the wavepacket.

Almost all of the wavepackets were formed when a particularly energetic vortex
is extended downstream of the stagnation plane by virtue of being wrapped around
the leading edge. At the low turbulence level and sharp leading edge of case A,
such vortices and the associated spanwise shear were few and far between. Hence the
rarity of spots formed through wavepackets. On the other hand, with higher turbulence
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intensity (or blunter leading edge), such strong vortices occur more frequently and thus
are able to affect transition through the higher rate of production of the wavepackets
that lead to spot formation. However, not all wavepackets that are spawned at the
leading edge lead to the formation of a spot. Some exhibit transient growth followed
by decay. Such precursors, though they become large enough to be seen in the
boundary layer, do not produce any turbulent spots.

5.1. Formation of wavepackets

Simulations with localized vortices introduced into the domain from the inflow
boundary confirm the formation of spot precursors at the leading edge by wrapped
vortices. Furthermore, such ‘clean’ simulations shed more light on the mechanism that
leads to the formation of the wavepackets. A pair of counter-rotating vortices (Taylor
1918), aligned along the y-axis, centred about the plane z =0.12, are imposed at the
inflow boundary using

uθ =
Mr

16πν2t2
exp

(
−r2

r2
c

)
(5.1)

where t and r are time and distance from the centre of the vortex respectively, ν is
the coefficient of kinematic viscosity, M is the total angular momentum of the vortex,
given by

M =

∫ ∞

0

uθr 2πr dr (5.2)

and rc =
√

4νt is a representative size of the vortex, which we call the core radius.
The vortex strength is chosen so that the maximum value of the tangential velocity
is uθ ∼ 0.02U∞ and the core radius is 2δ99 at the junction of the plate and the leading
edge.

The vortices convect downstream, are stretched around the leading edge, and
interact with the boundary layer. The difference between these simulations and those
of Bech et al. (1998) is in the receptivity process. While Bech et al. (1998) start with
initial conditions wherein disturbances are already inside the boundary layer, the
current simulation uses vortices that are outside. Therefore, the receptivity process
by which these free-stream disturbances enter the boundary layer is also included.
Figures 17(a), 17(b) and 17(c) show the plan-view of velocity fluctuations in the
boundary layer (at y/δ99,loc ∼ 0.25) and the associated streamwise profiles of spanwise
velocity are shown in figure 17(d). These velocity contours are qualitatively similar
to those in figures 15(a), 15(b) and 15(c). The symmetry of the response about the
z = 0.12 plane is a consequence of the symmetry of the disturbance. However, such
a symmetry, about the precursor centre plane, is also evident in the spot precursors.
This is manifested in the form of a change in sign of the spanwise velocity while the
streamwise and wall-normal velocities do not change sign. The spanwise profiles in
figure 17(d) show the localized disturbance left behind by the vortex pair, which has
moved out of the frame. The spot precursor of figure 13(d) has a similar structure.
Further similarity is evident in the side view of the disturbance inside the boundary
layer, shown in figure 18(a), whose inclined shear layers are similar to those of the
spot precursor of figure 14(a). However, it should be noted that the disturbances in
the spot precursor are located lower in the boundary layer than those in the Taylor’s
vortex case. Streamwise profiles of the spanwise velocity shown in figure 18(b) at
different wall-normal locations are also similar to those of figure 14(b). The maximum
disturbance velocity occurs in the lower half of the boundary layer at y ∼ δ99,loc/4.
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The wall-normal profiles of velocity disturbances in the boundary layer are shown in
figure 18(c). The peak spanwise velocity occurs at y/δ99,loc ∼ 0.25 as in figure 14(c).

The speed of the wavepacket left behind by the interaction of the vortices with the
leading edge and the boundary layer is evaluated by measuring its streamwise location
at various times. For the vortices used in this study, the average speed is ∼ 0.5U∞.
Simulations with vortices of larger core radii indicate that this speed is insensitive to
the size of the vortex and its ability to penetrate the boundary layer. However, all the
vortices considered cause small responses that are decaying in time. This is evident
from figure 18(b) where the maximum amplitude of the spanwise velocity in the
boundary layer is around w/U∞ ∼ 0.002, and decreases as the disturbance convects
downstream.

The similarities between the response of the boundary layer vortices aligned normal
to the wall and free-stream turbulence leads us to believe that the interaction of such
vortices with the leading edge results in the formation of spot precursors. The resultant
disturbance inside the boundary layer is in the form of localized streamwise vorticity,
also studied by Breuer & Landahl (1990), Breuer & Haritonidis (1990), Henningson
et al. (1993), and Bech et al. (1998). However, we have so far been unable to determine
the conditions under which free-stream vortices lead to growing localized disturbances
inside the boundary layer as seen by Bech et al. (1998). This remains a topic for further
research.

6. Discussion
In this section, we consider some of the earlier efforts to study the effects of

leading edges on bypass transition and our observations are compared to theirs.
While comparisons cannot be direct as the conditions of the previous experiments
and theoretical treatments are different from our simulations, some useful information
can be gleaned through qualitative comparisons.

Careful experiments were conducted by Kendall (1991) to study the effect of leading-
edge bluntness on the response of a flat-plate boundary layer forced by low levels
of free-stream turbulence (urms/U∞ < 0.4 %). Watmuff (1997) also conducted similar
experiments aimed at minimizing the amplitude of Klebanoff modes in the boundary
layer in a tunnel where the maximum free-stream turbulence intensity was 0.12 %.
Both experiments demonstrate the insensitivity of Klebanoff modes to leading-edge
bluntness and shape. On the other hand, Kendall (1991) observed the TS wave
response in the boundary layer to increase nonlinearly with bluntness. However, in
the present computations, using two different methods for TS wave detection, i.e. (i) a
differential pressure measurement as used by Kendall (1991) and (ii) a decomposition
of the disturbances into an expansion in terms of the eigenfunctions (Grosch &
Salwen 1981) and evaluating the magnitude of the coefficient of the TS eigenfunction
of interest, revealed that the energy contained in the TS waves is insignificant. This is
possibly because the TS waves are overwhelmed by other disturbances (such as the
wavepacket-like spot precursors) induced by free-stream turbulence which is much
stronger in the simulations than the experiments of Kendall (1991), which are much
lower than the threshold above which bypass mechanisms, let alone leading edge
effects, dominate. Therefore, while the leading edge may have a larger influence on
the amplitude of TS waves, other mechanisms, including anisotropy and leading-edge-
induced disturbances dominate at higher turbulence levels.

The model used in the experiments conducted by Westin et al. (1994) (and in later
studies such as that of Matsubara & Alfredsson 2001) was designed using potential
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flow simulations to remove the suction peak on the working surface of the plate. In
spite of this careful design, a significant upstream shift of transition was observed
when the suction peak was only about 10 % of the dynamic pressure. A similar trend
can be seen from the present simulations where, for the same free-stream conditions,
the leading edge with the larger suction peak (case E with the blunter leading edge)
shows earlier transitiion (compared to case A).

As already discussed, Goldstein & Wundrow (1998) argue that the stretching of
vortices around the leading edge leads to streamwise vortices, which then induce
streamswise velocity perturbations of the Klebanoff mode type. In subsequent work,
Wundrow & Goldstein (2001) show that streamwise vortices are indeed effective in
producing Klebanoff modes as well as, in the nonlinear region downstream, low-speed
streaks as seen in simulations. However, this hypothesis assumes that transition with
and without leading-edge effects occurs by the same mechanism. The leading edge
simply causes it to happen sooner by enhancing the growth of Klebanoff modes by
vortex stretching. The present simulations show that there is a far stronger effect, also
due to vortex stretching, of localized regions of streamwise vorticity in the boundary
layer that grow and breakdown quickly. Growth of these disturbances is augmented
by the adverse-pressure-gradient region over the leading edge (Bech et al. 1998).
Furthermore, growth rate can also be higher as they evolve in a buffeted boundary
layer where near-wall inflection points are present.

7. Conclusions
Simulations of bypass transition of a boundary layer on a flat plate with a blunt

leading edge have been carried out. The leading-edge aspect ratio as well as the
free-stream turbulence characteristics are varied to cover a wide range of parameters
and to elucidate the effect of various parameters on transition onset and length. The
results indicate that when the leading edge is sharp, and the free-stream turbulence
weak, transition occurs through instabilities developing on low-speed streaks as in the
simulations of Brandt et al. (2004). This mechanism is the same as the one described
by Jacobs & Durbin (2001) as interaction of high-frequency free-stream eddies with
backward jets. The well-established dependence of bypass transition on turbulence
intensity and length scale have also been confirmed, i.e. transition moves upstream
with increase in intensity as well as turbulence integral scale. On the other hand,
for a given leading edge, when the turbulence intensity or the length scale exceeds a
certain threshold, transition occurs through growth and breakdown of wavepacket-
like disturbances in the boundary layer and not through the sinuous instability
mechanism. The transition scenario that emerges from this study is as follows: vortex
stretching around the leading edge induces localized streamwise vorticity in the
boundary layer. These disturbances grow as they convect downstream, their growth
rate being higher in the adverse-pressure-gradient region (Bech et al. 1998). After
linear and nonlinear growth, breakdown to turbulence occurs. Growth could be fur-
ther augmented by inflectional velocity profiles close to the wall. Simulations of the
boundary layer interacting with a pair of counter-rotating vortices shows a response
qualitatively similar to the spot precursor. Therefore, at similar free-stream turbulence
characteristics, a blunter leading edge is seen to lead to earlier onset of transition.
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502 S. Nagarajan, S. K. Lele and J. H. Ferziger

REFERENCES

Abu-Ghannam, B. J. & Shaw, R. 1980 Natural transition of boundary layers – the effects of
turbulence, pressure gradient, and flow history. J. Mech. Engng Sci. 22 (5), 213–228.

Amini, J. & Lespinard, G. 1982 Experimental study of an ‘incipient spot’ in a transitional boundary
layer. Phys. Fluids 25, 1743–1750.

Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass
transition in boundary layers. Phys. Fluids 11, 134–150.

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary
layer streaks. J. Fluid Mech. 428, 29–60.

Aris, R. 1989 Vectors, Tensors, and the Basic Equations of Fluid Mechanics . Dover.

Bech, K. H., Henningson, D. S. & Henkes, R. A. W. M. 1998 Linear and nonlinear development
of localized disturbances in zero and adverse pressure gradient boundary layers. Phys. Fluids
10, 1405–1418.

Benney, D. J. & Gustavsson, L. H. 1981 A new mechanism for linear and nonlinear hydrodynamic
instability. Stud. Appl. Math. 64, 185–209.

Brandt, L., Cossu, C., Chomaz, J.-M., Huerre, P. & Henningson, D. S. 2003 On the convectively
unstable nature of optimal streaks in boundary layers. J. Fluid Mech. 485, 221–242.

Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-pressure-gradient
boundary layers. J. Fluid Mech. 472, 229–261.

Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to
free-stream turbulence. J. Fluid Mech. 517, 167–198.

Breuer, K. S. & Haritonidis, J. H. 1990 The evolution of a localized disturbance in a laminar
boundary layer. Part 2. Weak disturbances. J. Fluid Mech. 220, 569–594.

Breuer, K. S. & Landahl, M. T. 1990 The evolution of a localized disturbance in a laminar
boundary layer. Part 2. Strong disturbances. J. Fluid Mech. 220, 595–621.

Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous flow.
Phys. Fluids 4, 1637–1650.

Cohen, J., Breuer, K. S. & Haritonidis, J. H. 1991 On the evolution of a wavepacket in a laminar
boundary layer. J. Fluid Mech. 225, 575–606.

Collis, S. S. 1997 A computational investigation of receptivity in high-speed flow near a swept
leading-edge. PhD thesis, Stanford University.

Crow, S. C. 1966 The spanwise perturbation of two-dimensional boundary layers. J. Fluid Mech.
24, 153–164.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability . Cambridge University Press.

Dryden, H. L. 1936 Airflow in the boundary layer near a plate. NACA Rep. 562. National Advisory
Committee for Aeronautics.

Gaster, M. 1968 The development of three-dimensional wavepackets in a boundary layer. J. Fluid
Mech. 32, 173–184.

Gaster, M. & Grant, I. 1975 An experimental investigation of the formation and development of
a wave packet in a laminar boundary layer. Proc. R. Soc. Lond. 347, 253–269.

Giles, M. B. 1990 Nonreflecting boundary conditions for Euler equation calculations. AIAA J. 28,
2050–2058.

Goldstein, M. E. & Wundrow, D. W. 1998 On the environmental realizability of algebraically
growing disturbances and their relation to Klebanoff modes. Theor. Comput. Fluid Dyn. 10,
171–186.

Govindarajan, R. & Narasimha, R. 1995 Stability of spatially developing boundary layers in
pressure gradients. J. Fluid Mech. 300, 117–147.

Grosch, C. E. & Salwen, H. 1981 The continuous spectrum of the Orr-Sommerfeld equation.
Part 2. Eigenfunction expansions. J. Fluid Mech. 104, 445–465.

Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for bypass transition
from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250, 169–207.

Hultgren, L. S. & Gustavsson, L. H. 1981 Algebraic growth of disturbances in a laminar boundary
layer. Phys. Fluids 104, 1000–1004.

Hunt, J. C. R. & Durbin, P. A. 1999 Perturbed vortical layers and shear sheltering. Fluid Dyn. Res.
24, 375–404.



Leading-edge effects in bypass transition 503

Jacobs, R. G. & Durbin, P. A. 1998 Shear sheltering and the continuous spectrum of the Orr-
Sommerfeld equation. Phys. Fluids 10, 2006–2011.

Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185–
212.

Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.

Johnson, M. W. & Ercan, A. H. 1999 A physical model for bypass transition. Intl J. Heat Fluid
Flow 20, 95–104.

Jonas, P., Mazur, O. & Uruba, V. 2000 On the receptivity of the by-pass transition to the length
scale of the outer stream turbulence. Eur. J. Mech. B Fluids 19, 707–722.

Jordinson, R. 1970 The flat plate boundary layer. Part 1. Numerical integration of the Orr-
Sommerfeld equation. J. Fluid Mech. 43, 801–811.

Kendall, J. M. 1985 Experimental study of disturbances produced in a pre-transitional boundary
layer by weak free-stream turbulence. AIAA Paper 85-1695.

Kendall, J. M. 1991 Studies on laminar boundary-layer receptivity to freestream turbulence near a
leading edge. In Boundary Layer Stability and Transition to Turbulence (ed. D. C. Reda, H. L.
Reed & R. Kobayashi), pp. 23–30. ASME.

Kendall, J. M. 1998 Experiments on boundary-layer receptivity to freestream turbulence. AIAA
Paper 98-0530.

Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of
boundary-layer instability. J. Fluid Mech. 12, 1–24.

Klingmann, B. G. B., Boiko, A. V., Westin, K. J. A., Kozlov, V. V. & Alfredsson, P. H.

1993 Experiments on the stability of Tollmien-Schlichting waves. Eur. J. Mech. B Fluids 12,
493–514.

Leib, S. J., Wundrow, D. W. & Goldstein, M. E. 1999 Effect of free-stream turbulence and other
vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169–203.

Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface:
optimal perturbations. J. Fluid Mech. 404, 289–309.

Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to
free-stream turbulence. J. Fluid Mech. 430, 149–168.

Mohamed, M. S. & LaRue, J. C. 1990 The decay power law in grid-generated turbulence. J. Fluid
Mech. 219, 195–214.

Morkovin, M. V. 1969 The many faces of transition. In Viscous Drag Reduction (ed. C. S. Wells).
Plenum Press.

Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2003 A robust high-order method for large eddy
simulation. J. Comput. Phys. 191, 392–419.

Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2004 A high-order method for mixed direct and
large-eddy simulation of turbulent and transitional flows. In preparation .

Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech.
252, 209–238.

Roach, P. E. & Brierley, D. H. 1992 The influence of a turbulent free-stream on zero pressure
gradient transitional boundary layer development Part 1: Test cases T3A and T3B. In
Numerical Simulation of Unsteady Flows and Transition to Turbulence (ed. O. Pironneau, W.
Rodi & I. L. Ryhming), pp. 319–347. Cambridge University Press.

Schmid, P. J. & Henningson, D. J. 2001 Stability and Transition in Shear Flows . Springer.

Taylor, G. I. 1918 On the dissipation of eddies. R&M 598. British Aeronautical Research Committee.

Taylor, G. I. 1939 Some recent developments in the study of turbulence. In Proc. Fifth Intl Congress
for Applied Mathematics (ed. J. P. D. Hartog & H. Peters), pp. 294–310. Wiley.

Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability
without eigenvalues. Science 261, 578.

Vasudeva, B. R. 1967 Boundary-layer instability experiment with localized disturbance. J. Fluid
Mech. 29, 745–763.

Watmuff, J. 1997 Detrimental effects of almost immeasurably small free-stream nonuniformities
generated by wind tunnel screens. AIAA Paper 97-0228.

Wazzan, A. R. 1975 Spatial stability of tollmien-schlichting waves. Prog. Aerospace Sci. 16, 99–127.

Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994
Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer
structure and receptivity. J. Fluid Mech. 281, 193–218.



504 S. Nagarajan, S. K. Lele and J. H. Ferziger

White, F. M. 1991 Viscous Fluid Flow . McGraw-Hill.

Wundrow, D. W. & Goldstein, M. E. 2001 Effect on a laminar boundary layer of small-amplitude
streamwise vorticity in the upstream flow. J. Fluid Mech. 426, 229–262.

Xiong, Z. 2004 Stagnation point flow and heat transfer under free-stream turbulence. PhD thesis,
Stanford University.

Xiong, Z., Nagarajan, S. & Lele, S. K. 2004 A simple method for generating inflow turbulence.
AIAA J. 42, 2164–2166.

Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid
Mech. 531, 85–111.


